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Part I
World and representation





Chapter 1
The world and the mind

We often confuse the world with our mental representation of the world itself. Is this
a correct assumption?

1.1 Frames of mind

Following social theory, a frame is a schema of interpretation, a collection of anec-
dotes and stereotypes, that individuals rely on to understand and respond to events
[5]. People build a series of mental representations of the world through biological
and cultural influences. They then use these filters to make sense of the world. The
choices people make are influenced by frames. Participation in a language commu-
nity necessarily influences an individual’s perception of the meanings attributed to
words or phrases.

Example 1.1 (The car accident) In [8] two experiments are reported in which subjects
viewed films of automobile accidents and then answered questions about events
occurring in the films. The question, “About how fast were the cars going when they
smashed into each other?” elicited higher estimates of speed than questions which
used the verbs collided, bumped, contucted, or hit in place of smashed. On a retest
one week later, those subjects who received the verb smashed were more likely to
say “yes” to the question, “Did you see any broken glass?”, even though broken
glass was not present in the film. These results are consistent with the view that the
questions asked subsequent to an event can cause a reconstruction in one’s memory
of that event” (Quote from the abstract of [8]).

Example 1.2 (The Asian disease problem) Tversky and Kahneman [6] demonstrated
systematicity when the same problem is presented in different ways, for example
in the Asian disease problem. Participants were asked to "imagine that the U.S. is
preparing for the outbreak of an unusual Asian disease, which is expected to kill
600 people. Two alternative programs to combat the disease have been proposed.
Assume the exact scientific estimate of the consequences of the programs are as
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4 1 The world and the mind

follows." The first group of participants was presented with the following choice. In
a group of 600 people,

• Program A: "200 people will be saved";
• Program B: "there is a 1/3 probability that 600 people will be saved, and a 2/3

probability that no people will be saved"

72% of the participants preferred program A, 28%, opted for program B. The second
group of participants was presented with a different choice. In a group of 600 people,

• Program C: "400 people will die";
• Program D: "there is a 1/3 probability that nobody will die, and a 2/3 probability

that 600 people will die"

In this decision frame, 78% preferred program D, with the remaining 2% opting for
program C. Programs A and C are identical, as are programs B and D. The change
in the decision frame between the two groups of participants produced a preference
reversal: when the programs were presented in terms of lives saved, the participants
preferred the secure program, A (= C). When the programs were presented in terms
of expected deaths, participants chose the gamble D (= B).[4].

1.2 Optical Illusions

An optical illusion, or visual illusion, occurs when the visual system creates a per-
ception that seems different from the surrounding reality. The main categories of
illusions are physical, physiological and cognitive, each with types such as ambigui-
ties, distortions, paradoxes and fictions. Examples include the apparent curvature of a
stick in water (physical distortion), the effect of adapting to movement (physiological
paradox), and the residual impression of an image (physiological fiction). Patholog-
ical visual illusions result from pathological changes in physiological mechanisms
and can lead to visual hallucinations. These illusions can be used in the monitoring
and rehabilitation of psychological disorders such as phantom limb syndrome and
schizophrenia.

Example 1.3 (Herman Grid) A demonstration of how our perception can deceive
us is Herman Grid [1], which is an optical illusion in which a grid of white dots
on a black background appears to create dark spots at the points of intersection.
Although we know that there are no spots actually present, our perception tricks
us into believing that they are present. This example demonstrates how our visual
perception (and so our senses) can deviate from objective reality.
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Fig. 1.1 Herman Grid

Example 1.4 (Kanizsa triangle) The illusion consists in the fact that looking at the
image we hallucinate to see two triangles and 3 circles, but actually none of them is
there.

Fig. 1.2 Kanizsa Triangle

Example 1.5 (Pareidolia) Pareidolia is the tendency for perception to impose a mean-
ingful interpretation on a nebulous stimulus, usually visual, so that one sees an object,
pattern, or meaning where there is none. For example, we tend to see faces every-
where, even in the surface of the Moon.

Fig. 1.3 Pareidolia
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Example 1.6 (My Wife and My Mother-in-Law) This is a famous optical illusion in
which viewers can see either a young woman looking away or an old woman in
profile, depending on how they interpret the drawing’s lines. The illusion plays on
our ability to switch between different perspectives.

Fig. 1.4 My Wife and My Mother-in-Law

Example 1.7 (Impossible Trident) Also known as the "blivet", this illusion depicts a
three-pronged trident that mysteriously transforms into two cylindrical shafts at the
other end. This illusion plays with our perception of three-dimensional space.

Fig. 1.5 Impossible Trident

Example 1.8 (Rubin’s Vase) This is a classic example of figure-ground perception.
Viewers can either see a vase in the center or two faces in profile facing each other.
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The brain can switch between either interpretation but cannot see both at the same
time.

Fig. 1.6 Rubin’s Vase

Example 1.9 (Penrose Triangle) This is an "impossible object" that cannot exist in
three-dimensional space. It appears to be a solid object made of three straight beams
of square cross-section, but its construction is impossible.

Fig. 1.7 Penrose Triangle

1.3 Mind Fallacies

A fallacy is reasoning that is logically invalid, or that undermines the logical validity
of an argument. All forms of human communication can contain fallacies. The use
of fallacies is common when the speaker’s goal of achieving common agreement is
more important to them than utilizing sound reasoning.
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Fallacies can be classified depending on their structure (formal fallacies) or on
their content (informal fallacies). A formal fallacy, also called a deductive fallacy or
logical fallacy [2], represents a type of reasoning that loses validity due to a flaw in
its logical structure. This flaw can be clearly represented within a standard logical
system, such as propositional logic. In other words, it is a deductive argument that
is invalid. Even though the premises of the argument might be true, the conclusion
drawn from it is still false. Informal fallacies, the larger group, may then be subdivided
into categories such as improper presumption, faulty generalization, and error in
assigning causation and relevance, among others.

We provide below various examples of informal and formal fallacies.

Example 1.10 (Cognitive Bias) Cognitive biases [12] are an example of informal fal-
lacies. They represent systematic patterns of deviation from the norm and rationality
in the evaluation process. The Asian disease example, see above, is an instance of
cognitive bias.

Example 1.11 (Misconceptions) Misconceptions are informal fallacies. A common
misconception is a perspective or data that is often considered to be true but is actually
false. Usually, such misunderstandings stem from entrenched traditions (such as
gossipy tales), stereotypes, superstitions, fallacies, misinterpretations of science, or
the spread of pseudoscience. Some of these misunderstandings are considered urban
legends and often contribute to moral alarmism.

Example 1.12 (Cognitive Distortion) Cognitive distortions are an informal fallacy.
They can be traced to "thinking fallacies," representing irrational or distorted ways
through which we process information and perceive reality. Some of the main think-
ing fallacies involved include

• overgeneralization, which draws overly broad conclusions from a single negative
event;

• mental filtering, which focuses attention only on the negative aspects of a situation;
• over-labeling, which assigns negative labels to oneself or others based on mistakes

or failures;
• dichotomous thinking, which considers only extremes without acknowledging

nuance;
• emotional reasoning makes one believe that one’s feelings reflect objective reality;
• personalization leads one to interpret events as being directly related to oneself;
• Negative prediction involves predicting the worst without concrete evidence;
• Catastrophism makes one imagine the worst as the only possibility, ignoring

alternatives, while sample selection draws general conclusions from a limited set
of data or experiences.

Example 1.13 (Paradoxes) Paradoxes are examples of formal fallacies. Paradoxes are
situations or statements that seem contradictory or contraintuitive, often challenging
our normal thinking and expectations. They are intellectual puzzles that can cause
confusion and amazement as they violate our common understanding of logic or the
laws of reality.
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Some paradoxes emerge from fallacious reasoning, where it appears that rules
of thought are correctly applied, but the end result is nonetheless contradictory or
nonsensical. These paradoxes teach us the importance of carefully examining the
premises and inferences behind an argument.

Conversely, there are paradoxes that emerge from complex situations or situations
that fall into categories of mathematical or philosophical problems. These paradoxes
can challenge our intuition and reveal the limitations of our knowledge. In some
cases, these paradoxes can highlight deep issues in the very structure of our rational
thinking.

A particular type of paradoxes, called antinomies, is characterized by the pres-
ence of self-contradictions in situations where we would expect consistency. These
paradoxes can be used to highlight the inherent challenges in dealing with concepts
such as truth, description or infinity.

Example 1.14 (The Map - Territory confusion) The map-territory relationship [7] is
a fundamental concept for understanding the fallacies of the human mind. Essen-
tially, it points out that the mental representations we create, such as concept maps,
models and interpretations, are not identical to the reality they seek to represent.
This concept detects several distortions in the perception and interpretation of hu-
man reality. For example, people often generalize and make incorrect conclusions
based on limited experiences, confirming their own biases and ignoring conflicting
information. Cultural beliefs influence mental maps, leading to distorted perceptions.
Cognitive distortions and overconfidence in representations can lead away from ob-
jective reality. In summary, understanding the map-territory relationship prompts us
to be aware of discrepancies between our mental representations and actual reality,
helping us to avoid wrong thinking traps and maintain a critical perspective.

1.4 So What?

In this chapter, we explored the inherent flaws in human thinking, such as fallacies,
biases and misconceptions, which can affect our understanding of reality and decision
making. However, we can adopt several strategies to overcome these challenges and
promote more accurate, rational and logic-based thinking.

Logic is a crucial tool for avoiding fallacious reasoning. Formalizing thinking
through logic provides us with a structured framework for evaluating arguments and
drawing conclusions. The systematic approach of logic helps us recognize and foil
fallacious reasoning. Learning to identify the premises, inferences and conclusions
in an argument enables us to detect logical errors or inconsistencies. This is key in
Computer Science and even more in Artificial Intelligence.





Chapter 2
Representations

The various types of fallacies described in Section 1.3 raise the issue of whether
it is possible to deal with them. But why? To deal in which sense? Modulo some
extreme cases, humans and humanity have been able to develop well and grow in
time despite the pervasiveness of fallacies in human interactions with the world and
with others. Two are the main reasons underlying this work. The first is that, because
of the Web and social platforms, now humans are able to interact with people that
are hardly known and with very different cultures and, furthermore, they get in
contact with parts of the world that they never visited physically. The probability
of misalignments and misunderstandings among people has grown immensely. The
second is that, in this era where we want to build CS and AI systems which are more
and more complex, more and more intelligent, and which pervasively interact with
people in their everyday lives, we need to have systems which are robust, trustable,
and whose behaviour we fully understand and also control.

The first step is to find a way to build representations of the world which are
not ambiguous and which can be used as the basis for solving the interpretations
problems highlighted in Section 1.3. This is the gaal of this section.

2.1 The Semantic Gap

Living organisms perceive reality, what we call the world, through the lenses of their
perceptions organs. This process is not neutral. Different species and even different
humans perceive the world differently. We talk of Semantic Gap relating to the
impossibility for humans and machines to perceive the world as it really is, or even
in the same way. The Semantic Gap is the source of the pervasive misalignment of
the mental models of the world that humans, and also machines, build.

Intuition 2.1 (World) The world is what we perceive through the five senses and
assume it exists. It is the spatio-temporal dimension in which humans live and interact
with other humans and everything else around them.

11
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Fig. 2.1 The 5 Senses: sight, hearing, touch, taste and smell.

Intuition 2.2 (Memory) When we perceive the world we create in our mind a
memory of what we have perceived, the memory being itself a part of the world.

Intuition 2.3 (Mental Representations) Mental representations are a part of a
person’s memory. Mental representations are such that there is a correspondence
between their contents and what is the case in the world they describe.

Fig. 2.2 Mental Representations.

Observation 2.1 (Mental representations) All humans have their own mental rep-
resentations of the world. They are a fundamental mechanism enabling human knowl-
edge, reasoning, action and communication.

Intuition 2.4 (Semantic gap) The semantic gap is the difference between the world
and a human’s mental representation of the world itself, what (s)he has perceived.

Observation 2.2 (Semantic gap) Most of the details of how perception and memory
operate and how the different processes compose to generate memories is largely
unknown. However we know that our memories are an encoding of what we perceive
and that this encoding is partial and not faithfully representing what caused it.

2.2 Mental Representations

We have two types of mental representations.

Intuition 2.5 (Analogical mental representations) Analogical mental represen-
tations are mental representations that depict the world as we perceive it through
the five senses.
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Example 2.1 (Analogical mental Representations) We see an apple, we smell its
fragrance, we taste it when eating.

Observation 2.3 (Analogical mental representations) Analogical mental repre-
sentations enable us to acquire information about the world, directly from the world.
They are used to act in the world, to learn from what has been previously perceived
and to build an understanding of the world itself.

We describe analogical mental representations using languages. We use languages
to build mental linguistic representations about the world, as represented in mental
analogical representations.

Intuition 2.6 (Language) A language is any notation, generated by humans, agreed
upon by humans, which allows to describe analogical representations, to reason
about them, and to communicate about them to other humans.

Intuition 2.7 (Linguistic mental representations) Linguistic mental represen-
tations are mental representations that describe mental analogical representations
using language.

Example 2.2 (Linguistic mental representations, language) The most important ex-
ample of languages used in linguistic mental representations are the natural lan-
guages, e.g., Italian, and English, as memorized in our mind. Examples of linguistic
mental representations are a poem and, in general, any piece of text describing the
world that we remember.

Observation 2.4 (Linguistic mental representations) Linguistic mental represen-
tations are used to describe what is happening in analogical mental representations.
They allow to communicate to other humans about our mental representations (and,
thus, indirectly about the world), to learn from what has been previously described
or perceived, and to reason in order to to derive unknown facts from what we already
know.

Intuition 2.8 (Represent, depict, describe) To represent the world means anyone
of two things: to depict it or to describe it.

Observation 2.5 (Analogical and linguistic mental representations) Analogical
representations depict the world. Linguistic describe (the analogical representations
of the world). They both represent the world.
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Fig. 2.3 Diagram of Mental Representations

Observation 2.6 (Partiality of mental representations) Because of the semantic
gap, mental representations never describe the world completely. This has conse-
quences. First, there are indefinitely many analogical mental representations that
describe the same real world situation. Similarly, there is an indefinite number of
linguistic mental representations for the same analogical representation.

Observation 2.7 (Number of mental representations) Because of partiality there
are indefinitely many analogical mental representations that describe the same real
world situation. Furthermore, there is an indefinite number of linguistic mental
representations for the same analogical representation.

Observation 2.8 (Diversity of mental representations) Because of partiality, any
two mental representations are necessarily different, depending on the spacetime
coordinates under which they are generated, and the purpose of the person who
generates them

Example 2.3 (Diversity of mental representations) Two people describing the same
trip would do it so differently. For example, one person might have a partial and
rough mental representation of the city, based mainly on a few famous tourist sites
and the positive experiences he had during the trip. While the other person might
have a different mental representation focused on other aspects of the city. She might
remember the difficulties she encountered in finding the right way, some less pleasant
experiences with locals or bad weather during the trip. Her mental representation
might be more influenced by these less positive aspects.

Intuition 2.9 (Consistency and inconsistency of mental representations) We say
that any two mental representations are inconsistent when it is impossible for those
two mental presentations to represent the (same part of the) world, as he know it.
Consistency means absence of inconsistency. Two consistent mental representations
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are still diverse but they are compatible in the sense that there is a (analogical
representation of the) world which is described by both.

Example 2.4 (Inconsistency of mental representations) It is impossible to have two
different objects (e.g., two cats) exactly in the same place in the same moment or
the same object (a cat) in two different places in the same moment. Similarly, given
an object, certain properties (e.g., being of color blue) prevent other properties from
holding (e.g., being red), again in the same moment.

Observation 2.9 (Subjectivity of mental representations) Given the world they
perceive, humans build one or more among the many possible mental analogical
and linguistic representations of what they have perceived. Each individual has a
unique and personal perspective on the world, influenced by different experiences,
knowledge and viewpoints.

Observation 2.10 (Subjectivity vs. objectivity of mental representations) Hu-
mans may confuse the real world with their mental representations. A consequence
is the assumption that (their mental representation of) the world is the same for
everybody. Would this be the case would all be living in the same (mental represen-
tation of the) world. Because of subjectivity, this assumption turns out to be wrong.

Observation 2.11 (Subjectivity, inconsistency and objectivity) Two subjective
mental representations may be (mutually) inconsistent. The presence of inconsis-
tency provides evidence of the subjectivity of the mental representations involved.

2.3 Representations

The subjectivity and heterogeneity of mental representations raises some important
questions. Is it possible to guarantee that the mental representations of different
people are the same? Or, at least, that they are not mutually inconsistent and also
similar enough in some key features, in particular those which are relevant to the
problem to be solved? How do we enforce or at least facilitate the construction of
similar mental representations

Intuition 2.10 (Representations) A representation is a part of the world, developed
by the mind of a human, that represents that human’s mental representation, and is
made accessible, via one of the five senses, to other humans.

As for mental representations, we have two types of representations.

Intuition 2.11 (Analogical Representations) Analogical representations depict
analogical mental representations.

Intuition 2.12 (Linguistic Representations) Linguistic representations describe
linguistic mental representations.
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Example 2.5 (Representations) The following are examples of representations:

1. Any written natural language text is a linguistic representation, which can be
generated on multiple media, for instance, paper, media, projection on a screen;

2. Any spoken natural language stream is a linguistic representation, which can be
registered on transcribed on paper;

3. All forms of art, e.g., drawings, statues, paintings, music, monuments, are ana-
logical representations.

Example 2.6 (Linguistic and analogical mental representations)

• There is a tree
• There is a banana
• The monkey is eating a banana
• The monkey is sitting on a tree
• The monkey is scratching his head

Observation 2.12 (Partiality, number, diversity, (in)consistency, subjectivity
and objectivity) Observations 2.6 on the partiality, 2.7 on the number, 2.8 on
the diversity and 2.9 on the inconsistency of mental representations apply also to
representations. Not being in the mind of people, representations cannot be said to
be subjective or objective. The question is about the mental representations they
generate.

Observation 2.13 (From mental representations to representations to mental
representations) The process and consequences of generating representations is well
represented in the analogical representation in Figure 2.4. That is: the representation
is generated by a single person starting from his/her mental representation and in
turn it generates new mental representations in the minds of the people looking at it.

Fig. 2.4 From Mental Representations to Representations and back.

Observation 2.14 (From mental representations to representations) Represen-
tations, by their own nature and purpose, are such that there is a correspondence
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between their contents and those of the mental representations they describe. This is
why people generate them.

Fig. 2.5 Diagram of Representations

Observation 2.15 (From representations to mental representations) There is no
guarantee that a representation generates similar subjective mental representations.
Think for instance of the many different interpretations, impressions, feelings that a
piece of art generates.

Fig. 2.6 Diagram of Representations
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2.4 Exercises

Exercise 2.1 (Linguistic and analogical mental representations) Create a linguis-
tic representation for the analogical mental representation in Figure 2.1.

Fig. 2.7 Monkey and banana.

Exercise 2.2 (Linguistic and analogical mental representations) Create an ana-
logical representation for this linguistic mental representation. The phrases are writ-
ten in Tswana, a language spoken in southern Africa.

• Mongwe le mongwe o tshela mo
• lafatsheng la gagawe go ya ka kitso
• ya gagwe le go ya ka seo a se lemogang.
• Maitemogelo a tlhola seo, puo e letlelela
• go arologana tlhaloso
• le batho ba bangwe, ka moo



Chapter 3
Models and assertional theories

Observation 2.15 may suggest that there is no solution to the problem of subjectivity
of mental representations. However this is not the case. The key observation is
that representations are built by humans with the specific purpose of making mental
representations of the same representation converge as much as possible, minimizing
in particular the probability of inconsistencies. The question to be answered is how
to build such representations.

3.1 Models

The starting point is analogical mental representations, as our representations start
from here. Consider the following example.

Example 3.1 (What is in an analogical representation) Consider the analogical rep-
resentation depicted in the image in Figure 3.1. We can see three people, that we can
assume have names Paolo, Stefania and Sofia, that they are friends, various dogs,
the fact that they are one at the right of the other, and of course much more.

Fig. 3.1 An analogical representation of an everyday situation.

19
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Observation 3.1 (Analogical representations as sets of facts) Any analogical rep-
resentation, for instance that in Figure 3.1, always depicts various objects, e.g.,
Sofia, which belong to certain classes, e.g., "Sofia is a person", with certain prop-
erties articulated at various levels of complexity, e.g., "Sofia has blond hair", which
are doing things, e.g., "Sofia is walking", and are engaged in certain relations with
other objects, e.g. "Sofia is a friend Paolo and she is now interacting with her dogs".
Despite their heterogeneity, all the statements above share the fact that they describe
a certain state of affairs in the world. We call these statements facts. Any analogical
representation can be thought of as a set of facts. We call analogical representations
described as sets of facts, models

Intuition 3.1 (Fact) A fact f is something happening at certain spacetime coordi-
nates.

Definition 3.1 (Model) A model M is a set of facts F = {f}

M = {f} (3.1)

Observation 3.2 (Facts and models) Facts are the atomic, not further decompos-
able, elements of a model. Note that, contrary to models, facts are taken as a primitive
notion and therefore cannot be formally defined

Example 3.2 (The facts of a model represented in Figure 3.1) A model, one among
many others, of the situation represented in Figure 3.1 could for instance contain the
following facts :

Sofia is a person Paolo is a man
Rocky is a dog Sofia is near Paolo
Sofia has blond hair Sofia is a friend of Paolo
Rocky is an animal Rocky is the dog of Sofia
...

Observation 3.3 (The subjectivity of facts) Facts are what is observed and is also
described, e.g., to third parties. The problem is that, just because of what discussed
in Section 2.2 and, specifically what facts are is subjective and hidden in the minds of
people who perceive them. How many more and/or different facts from those listed
in Example 3.2 could you think of? Indefinitely many! Notice that any fact can be
decomposed in any set of simpler facts if this is the current focus of the observer.
So, for instance, instead of focusing on Sofia I could focus on her hair, or legs or . . .

Observation 3.4 (Mutually (in)consistent facts in a model) The model of Example
3.2 could be extended to assert the fact that Sofia is a woman or that Paolo is a
person. We would however have problems extending it by adding the fact that Paolo
is a woman, or that Sofia is a dog, as we would have two mutually inconsistent
facts, something that we know cannot happen in the world as we perceive it. See
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also Observation 2.9. A model cannot contain facts which, at least intuitively. are
mutually inconsistent. Beyond this simple example, the issue is how to formalize
this intuition and then how to be able to detect it by reasoning about models.

Observation 3.5 (Facts and assertions) A fact, to be a fact, must be linguistically
described as such. It is not by chance that in Example 3.2 we pointed to facts via a set
of natural language descriptions. We call such descriptions, assertions. The simplest
way to think of an assertion is as a declarative natural language sentence articulated
in terms of a subject being in some more or less complex relation with an object (as
in, e.g., "Stefania is walking with the dogs towards the city center"), or of a subject
holding a certain more or less complex property (as in, e.g., "Stefania has blond long
hair").

3.2 Assertional theories

Observation 3.6 (Assertions and assertional theories) Assertions are indivisible,
we say atomic, descriptions of fact. Assertional theories are descriptions of models

Intuition 3.2 (Assertion) An assertion 𝑎 is an atomic linguistic representation of
some fact f.

Definition 3.2 (Assertional theory) An assertional theory TA is a set of assertions
TA = {𝑎}

TA = {𝑎} (3.2)

We need to state that an assertion is the description of a specific fact and, more in
general, that an assertional theory describes a model.

Example 3.3 (An assertional theory of the model represented in Figure 3.1) An
assertional theory, one among many others, describing the facts from Example 3.2
in natural language could be, for instance:

Sofia è una persona Paolo è un uomo Rocky è un cane
Sofia è vicina a Paolo Rocky è il cane di Sofia Sofia è un’amica di Paolo
Rocky è un animale Sofia ha i capelli biondi . . .

As can be seen, the assertional theory is in Italian, since being in natural language it
can also be expressed in this way, and it could equally be expressed in English.

3.3 Interpretation functions

Definition 3.3 (Interpretation function) Let I𝐴 be an interpretation function of
an assertional theory, defined as
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I𝐴 : TA → M. (3.3)

We say that a fact f ∈ M is the interpretation of 𝑎 ∈ I𝐴, and write

f = I𝐴(𝑎) = 𝑎I𝐴 (3.4)

to mean that 𝑎 is a linguistic description of f. We say that f is the interpretation of
𝑎, or, equivalently, that 𝑎 denotes f.

Observation 3.7 (Interpretation function, polysemy) I𝐴 is assumed to be a func-
tion, that is, for any fact there is only one assertion describing it. In fact, we must
guarantee that, if two facts 𝑓1 and 𝑓2 are different then they cannot both be the result
of the interpretation of the same assertion 𝑎, i.e., it cannot be that if I𝐴(𝑎) = 𝑓1
then also I𝐴(𝑎) = 𝑓2. This phenomenon, called polysemy is pervasive in natural
languages and it is one of the main sources of misunderstandings and, therefore, of
the construction of diverging mental representations of the same representation. The
polysemy of assertions arises directly from the polysemy of words. As examples: the
proper name Java has three meanings, that is, it is a programming language, a type
of coffee beans, and an island. The word car ha various meanings. For instance it
may mean automobile or a car part of of a train. General words, such as to do have
more than ten meanings. Polysemy is common to most words, in particular with
those words which are most commonly used (people tend to give words their own
specific meaning) and it is one of the major complications (not the only one) which
arise when building natural language understanding systems.

Observation 3.8 (The non ambiguity of interpretation functions) As from Sec-
tion 1.3 linguistic descriptions are ambiguous. As from Observation 3.7, one of the
main reasons is the polysemy of words. However this ambiguity is in the mind of the
listener/reader. The speaker/writer can be assumed to always have in mind the unique
analogical representation (s)he is describing. The notion of interpretation function
enforces this assumption forcing the speaker/writer to be explicit about the intended
meaning.

Observation 3.9 (Interpretation function, synonymity) Two assertions are syn-
onyms when they have the same meaning, that is, the interpretation of two different
assertions 𝑎1 and 𝑎2, may denote the same fact 𝑓 , i.e., I𝐴(𝑎1) = I𝐴(𝑎2) = 𝑓 .
Synonymous words are again pervasive in natural languages, in particular with the
most common entities. People, and entities in general, have multiple names, e.g.,
name, surname, name plus surname, nicknames, which are synonymous. Multiple
languages generate multiple names of the same entity (e.g., Great Britain, Gran Bre-
tagna). There are also synonymous nouns, for instance car and automobile. Notice
how the word car is both polysemous and synonymous. This is again quite common.
In general synonymity is not a problem. However, in relational databases synonymity
is not allowed, essentially for efficiency reasons. Databases are developed based on
the unique name assumption, that is, in databases, different strings and assertions
always mean different things.
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Example 3.4 (An interpretation function providing an interpretation of the asser-
tional theory describing Figure 3.1) . The natural interpretation function which
interprets the sentences in Example 3.3 (left) to the facts in Example 3.2 (right) is

I𝐴(Sofia è una persona) = Sofia is a person
I𝐴(Paolo è un uomo) = Paolo is a man
I𝐴(Rocky is a dog) = Rocky is a dog
I𝐴(Sofia is near Paolo) = Sofia is near Paolo
I𝐴(Rocky è il cane di Sofia) = Rocky is the dog of Sofia
I𝐴(Sofia è un’amica di Paolo) = Sofia is a friend of Paolo
I𝐴(Rocky è un animale) = Rocky is an animal
I𝐴(Sofia ha i capelli biondi = Sofia has blond hair
. . .

Observation 3.10 (Assertions and facts, subjectivity) The problem of the subjec-
tivity of representations remains, this being an unavoidable fact of life. However the
notions of fact, assertion and interpretation function give leverage. First, facts are
assumed to be unequivocally described, via interpretation functions, by assertions
where, in turn, are linguistic representations and, as such, can be shared. Second,
assertions, though subjectively selected by humans, are assumed to be atomic, that
is, to provide the minimal possible level of details at which a model can be described.

Fig. 3.2 Diagram of Representations





Chapter 4
Formal models and assertional theories

In order to avoid fallacious reasoning we need to represent models and assertional
theories in a unambiguous, that is formal, way. Four are the features of of interest to
us:

• Formality: It should be a logical language, that is, with well defined syntax and
semantics;

• Universality: it should be able to represent all types of facts;
• Intuitiveness: it should allow for assertions whose basic elements (entity names,

concepts and properties) as well as their structure (that is how the basic elements
are connected together to build assertions) should be, on one side, intuitive to
people while, on the other side, have a direct map to the structure and organization
of the reference domain;

• Computational efficiency: L𝐴 should allow for a fast and efficient inference
engine, exploiting the inherent efficiency of the data structures used to memorize
the world model.

Observation 4.1 (Types of assertional languages) ER and UML models are intu-
itive but not universal, they represent only knowledge facts. DBs are computationally
efficient but represent only data facts. Natural language is universal but its semantics
are not formally defined and it is not computationally efficient. The latter weakness
extends to well defined subsets of natural languages. As an instance of this case,
logical languages are universal with well defined syntax and semantics but they are
not intuitive to understand and also computationally not efficient (see also Section
??).

In Section 4.1, we introduce some basic definitions of set theory, useful in order to
define D, while, in Section 4.2, we introduce some basic definitions of graph theory
useful in order to define L𝐴.

25



26 4 Formal models and assertional theories

4.1 Set theory

4.1.1 Basic definitions

We can define sets in two ways

• Listing: The set is described by listing all its elements (for instance, 𝐴 =

{𝑎, 𝑒, 𝑖, 𝑜, 𝑢}).
• Abstraction: The set is described through a property of its elements (for instance,

𝐴 = {𝑥 |𝑥 is a vowel of the Latin alphabet}).

We have the following basic definitions.

Definition 4.1 (Empty Set) ∅ is the set containing no elements.

Definition 4.2 (Membership) 𝒂 ∈ 𝑨, element 𝒂 belongs to the set 𝑨.

Definition 4.3 (Non-membership) 𝒂 ∉ 𝑨, element 𝒂 doesn’t belong to the set 𝑨.

Definition 4.4 (Equality) 𝑨 = 𝑩, if and only if 𝑨 and 𝑩 contain the same elements.

Definition 4.5 (Inequality) 𝑨 ≠ 𝑩, if and only if it is not true that 𝑨 = 𝑩.

Definition 4.6 (Subset) 𝑨 ⊆ 𝑩, if and only if all elements in 𝑨 also belong to 𝑩.

Definition 4.7 (Proper Subset) 𝑨 ⊂ 𝑩, if and only if 𝑨 ⊆ 𝑩 and 𝑨 ≠ 𝑩.

Definition 4.8 (Universal Set) The universal set is the set of all elements or members
of all related sets and is denoted by the letter U .

We use Venn diagrams to represent sets. Venn diagrams consist of overlapping
or intersecting circles representing sets and their relationships. Each circle repre-
sents a specific set, and the area where the circles overlap represents the elements
shared between the corresponding sets. An element that does not belong to a set is
represented as a dot outside the circle representing the set.

𝐴 𝐵

𝐻

Fig. 4.1 Union set operation

Definition 4.9 (Union) Given two sets 𝑨
and 𝑩, the union of 𝑨 and 𝑩 is defined as
the set containing the elements belonging
to 𝑨 or to 𝑩 or to both, and is denoted
with 𝑨 ∪ 𝑩.
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Definition 4.10 (Intersection) Given
two sets 𝑨 and 𝑩, the intersection of
𝑨 and 𝑩 is defined as the set containing
the elements that belong both to 𝑨 and
𝑩, and is denoted with 𝑨 ∩ 𝑩.

𝐴 𝐵

𝐻

Fig. 4.2 Intersection set operation

𝐴 𝐵

𝐻

Fig. 4.3 Difference set operation

Definition 4.11 (Difference) Given two
sets 𝑨 and 𝑩, the difference of 𝑨 and
𝑩 is defined as the set containing all the
elements which are members of 𝑨, but
not members of 𝑩, and is denoted with
𝑨 \ 𝑩.

Definition 4.12 (Complement) Given a
universal set 𝑼 and a set 𝑨, where 𝑨 ⊆

𝑼, the complement of 𝑨 in 𝑼 is defined
as the set containing all the elements in𝑼
not belonging to 𝑨, and is denoted with
𝑨𝒄 or 𝑼 \ 𝑨.

𝐴

𝐻

𝑈

Fig. 4.4 Complement set operation

Theorem 4.1 (Properties of Operations)

• With same set

– 𝐴 ∩ 𝐴 = 𝐴

– 𝐴 ∪ 𝐴 = 𝐴

• Commutative

– 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

– 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

• Empty set

– 𝐴 ∩ ∅ = ∅
– 𝐴 ∪ ∅ = 𝐴

• Associative

– (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)
– (𝐴 ∪ 𝐵)∪ = 𝐴 ∪ (𝐵 ∪ 𝐶)

• Distributive

– 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶);
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– 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)

• De Morgan laws

– 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵

– 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵

4.1.2 Relations

Definition 4.13 (Cartesian product) Given two sets 𝑨 and 𝑩, the Cartesian product
of 𝑨 and 𝑩 is defined as the set of ordered couples (𝒂, 𝒃) where 𝒂 ∈ 𝑨 and 𝒃 ∈ 𝑩,
formally:

𝐴 × 𝐵 = {(𝑎, 𝑏) : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

Example 4.1 (Cartesian product) Given 𝐴 = {1, 2, 3} and 𝐵 = {𝑎, 𝑏}, then

𝐴 × 𝐵 = {(1, 𝑎), (1, 𝑏), (2, 𝑎), (2, 𝑏), (3, 𝑎), (3, 𝑏)}
𝑎𝑛𝑑

𝐵 × 𝐴 = {(𝑎, 1), (𝑎, 2), (𝑎, 3), (𝑏, 1), (𝑏, 2), (𝑏, 3)}

Definition 4.14 (Relation) A relation R from the set 𝐴 to the set 𝐵 is a subset of the
Cartesian product of 𝐴 and 𝐵: 𝑅 ⊆ 𝐴 × 𝐵.
If (𝑥, 𝑦) ∈ 𝑅, then we will write 𝑥𝑅𝑦 and we say ’x is R-related to y’.

Proposition 4.1 A binary relation on a set A is a subset 𝑅 ⊆ 𝐴 × 𝐴.

Given a relation R from A to B:

• the domain of R is the set 𝐷𝑜𝑚(𝑅) = {𝑎 ∈ 𝐴|there exists a 𝑏 ∈ 𝐵, 𝑎𝑅𝑏}
• the co-domain of R is the set 𝐶𝑜𝑑 (𝑅) = {𝑏 ∈ 𝐵 |there exists an 𝑎 ∈ 𝐴, 𝑎𝑅𝑏}

Example 4.2 Given 𝐴 = {1, 2, 3, 4}, 𝐵 = {𝑎, 𝑏, 𝑑, 𝑒, 𝑟, 𝑡} and 𝑎𝑅𝑏 iff in the Ital-
ian name of 𝑎 there is the letter 𝑏, then 𝑅 = {(2, 𝑑), (2, 𝑒), (3, 𝑒), (3, 𝑟), (3, 𝑡),
(4, 𝑎), (4, 𝑟), (4, 𝑡)}

Example 4.3 Given 𝐴 = {3, 5, 7}, 𝐵 = {2, 4, 6, 8, 10, 12} and 𝑎𝑅𝑏 iff 𝑎 iff 𝑎 is a
divisor of 𝑏, then 𝑅 = {(3, 6), (3, 12), (5, 10)}

Definition 4.15 (Inverse relation) Let 𝑅 be a relation from 𝐴 to 𝐵. The inverse
relation of 𝑅 is the relation 𝑅−1 ⊆ 𝐵 × 𝐴 where

𝑅−1 = {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑅}

Definition 4.16 (Relation Properties) Let R be a binary relation A.𝑅 is:

• reflexive iff 𝑎𝑅𝑎 for all 𝑎 ∈ 𝐴

• symmetric iff 𝑎𝑅𝑏 implies 𝑏𝑅𝑎 for all 𝑎, 𝑏 ∈ 𝐴

• transitive iff 𝑎𝑅𝑏 and 𝑏𝑅𝑐 imply 𝑎𝑅𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴
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• anti-symmetric iff 𝑎𝑅𝑏 and 𝑏𝑅𝑎 imply 𝑎 = 𝑏 for all 𝑎, 𝑏 ∈ 𝐴

Definition 4.17 (Equivalence relation) Let 𝑅 be a binary relation on a set 𝐴. 𝑅 is
an equivalence relation iff it satisfies all the following properties:

• reflexive
• symmetric
• transitive

Remark 4.1 An equivalence relation is usually denoted with ∼ or ≡

Definition 4.18 (Set partition) Let 𝐴 be a set, a partition of 𝐴 is a family 𝐹 of
non-empty subsets of 𝐴 so that:

• the subsets are pairwise disjoint
• the union of all subsets is the set 𝐴

Remark 4.2 Each element of 𝐴 belongs to exactly one subset in 𝐹

Definition 4.19 (Equivalence class) Let 𝐴 be a set and ≡ an equivalence relation on
𝐴, given an x ∈ 𝐴 we define equivalence class 𝑋 the set of elements x’ ∈ 𝐴 s.t. x’ ≡
x, formally:

𝑋 = {𝑥′ |𝑥′ ≡ 𝑥}

Remark 4.3 Any element x is sufficient to obtain the equivalence class 𝑋 , which is
denoted also with [x].

x ≡ x’ implies [x]=[x’]=𝑋

Definition 4.20 (Quotient set) We define quotient set of 𝐴 with respect to an equiv-
alence relation ≡ as the set of equivalence classes defined by ≡ on 𝐴, and denote it
with 𝐴 / ≡.

Theorem 4.2 Given an equivalence relation ≡ on 𝐴, the equivalence classes defined
by ≡ on 𝐴 are a partition of 𝐴. Similarly, given a partition on 𝐴, the relation 𝑅

defined as 𝑥𝑅𝑥′ iff 𝑥 and 𝑥′ belong to the same subset, is an equivalence relation on
𝐴.

Example 4.4 (Parallelism relation) Two straight lines in a plane are parallel if they
do not have any point in common or if they coincide.
The parallelism relation | | is an equivalence relation since it is:

• reflexive: 𝑟 | |𝑟
• symmetric: 𝑟 | |𝑠 implies 𝑠 | |𝑟
• transitive 𝑟 | |𝑠 and 𝑠 | |𝑡 imply 𝑟 | |𝑡

We can thus obtain a partition in equivalence classes: intuitively, each class represent
a direction in the plane.

Order relation:
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Definition 4.21 (Order) Let 𝐴 be a set and 𝑅 be a binary relation on 𝐴.
𝑅 is an order (partial), usually denoted with ≤, if it satisfies the following properties:

• reflexive 𝑎 ≤ 𝑎

• anti-symmetric 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 imply 𝑎 = 𝑏

• transitive 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 imply 𝑎 ≤ 𝑐

If the relation holds for all 𝑎, 𝑏 ∈ 𝐴 then it is a total order.

A relation is a strict order, denoted with "<", if it satisfies the following proper-
ties:

• transitive 𝑎 < 𝑏 and 𝑏 < 𝑐 imply 𝑎 < 𝑐

• for all 𝑎, 𝑏 ∈ 𝐴 either 𝑎 < 𝑏 or 𝑏 < 𝑎 or 𝑎 = 𝑏

4.1.3 Functions

Definition 4.22 (Functions) Given two sets A and B, a function f from A to B is a
relation that associates to each element 𝑎 in A exactly one element 𝑏 in B. Denoted
with:

𝑓 : 𝐴 → 𝐵

The domain of 𝑓 is the whole set 𝐴.
The image of each element 𝑎 in 𝐴 is the element 𝑏 in 𝐵 s.t. 𝑏 = 𝑓 (𝑎).
The co-domain of 𝑓 (or image of 𝑓 ) is a subset of 𝐵 defined as follows:

𝐼𝑚 𝑓 = {𝑏 ∈ 𝐵 | there exists an 𝑎 ∈ 𝐴 s.t. 𝑏 = 𝑓 (𝑎)}

Remark 4.4 It can be the case that the same element in 𝐵 is the image of several
elements in 𝐴.

Classes of functions:

Definition 4.23 (Surjective function) A function 𝑓 : 𝐴 → 𝐵 is surjective if each
element in 𝐵 is image of some elements in 𝐴 :

for each 𝑏 ∈ 𝐵 there exists an 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏

Definition 4.24 (Injective function) A function 𝑓 : 𝐴 → 𝐵 is injective if distinct
elements in 𝐴 have distinct images in 𝐵 :

for each 𝑏 ∈ 𝐼𝑚 𝑓 there exists a unique 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏

Definition 4.25 (Bĳective function) A function 𝑓 : 𝐴 → 𝐵 is bĳective if it is
injective and surjective:

for each 𝑏 ∈ 𝐵 there exists a unique 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏



4.1 Set theory 31

Definition 4.26 (Inverse function) If 𝑓 : 𝐴 → 𝐵 is bĳective we can define its
inverse function:

𝑓 −1 : 𝐵 → 𝐴

Remark 4.5 For each function 𝑓 there is a inverse relation. This relation is a function
iff 𝑓 is bĳective.

Example 4.5 (Inverse function) Example of two different inverse functions:

Fig. 4.5 Inverse of not bĳective function

Fig. 4.6 Inverse of bĳective function

Definition 4.27 (Composite function) Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be functions.
The composition of 𝑓 and 𝑔 is the function 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 obtained by applying 𝑓

and then 𝑔:

• (𝑔 ◦ 𝑓 ) (𝑎) = 𝑔( 𝑓 (𝑎)) for each 𝑎 ∈ 𝐴

• 𝑔 ◦ 𝑓 = {(𝑎, 𝑔( 𝑓 (𝑎)) |𝑎 ∈ 𝐴)}
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4.2 Graph theory

4.2.1 Basic Notions

Definition 4.28 (Graph) A graph 𝑮 is an ordered pair 𝑮 =< 𝑽, 𝑬 >, where 𝑽 is
the set of vertices (or nodes) and 𝑬 is the set of edges (or links). Edges are pairs of
vertices.

Definition 4.29 (Order) The order of a graph is the number of vertices of the graph.

Definition 4.30 (Size) The size of a graph is the number of edges in the graph.

Definition 4.31 (Degree) The degree of a vertex is the number of edges incident on
that vertex.

Definition 4.32 (Directed graph) A directed graph is a graph where edges are
ordered pairs of distinct vertices (𝒙, 𝒚). 𝒙 and 𝒚 are called the end points, where 𝒙
is the tail and 𝒚 is the head.

From now on we concentrate on directed graphs.

Definition 4.33 (Leaf, intermediate node) In a directed graph, a leaf is a node with
no outgoing nodes. A node which is not a leaf is an intermediate node.

Definition 4.34 (Path) A path, also called a linear graph, is a graph where the
vertices can be ordered in a sequence 𝒗1, 𝒗2, . . . , 𝒗𝒏, where the edges correspond to
the pairs of consecutive vertices {𝒗𝒊 , 𝒗𝒊+1} for 𝒊 = 1, 2, . . . , 𝒏 − 1.

TODO FIGURE

Definition 4.35 (Cycle, cyclic graph) A cycle, also called a circular graph, is a
path in which only the first and last vertices are equal. A cyclic graph is a graph
which contains a cycle.

TODO FIGURE

Definition 4.36 (Tree, rooted tree, root, leaf, intermediate nodes) A tree is an
undirected graph in which any two vertices are connected by exactly one path. A
polytree, or or directed tree, or oriented tree, is a directed acyclic graph whose
underlying undirected graph is a tree. A rooted tree is a tree in which one vertex has
been designated the root. A root is a node with no incoming nodes.

TODO FIGURE

Definition 4.37 (Forest, polyforest, directed forest, oriented forest) A forest is an
undirected graph. A polyforest, or directed forest, or oriented forest, is a directed
acyclic graph whose underlying undirected graph is a forest.

TODO FIGURE

Definition 4.38 (Directed acyclic graph (DAG)) A directed acyclic graph (DAG)
is a directed graph that does not contain any cycles.

TODO FIGURE
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4.2.2 Labeled Graphs

From now on we concentrate on labeled directed graphs.

Definition 4.39 (Labeled Graph) A labeled graph is a type of graph where each
vertex and edge is assigned a label.

Fig. 4.7 Labeled Graph

Fig. 4.8 Labeled Graph





Solutions

Exercises of Chapter 2

Solution 2.1 (Linguistic and analogical mental representations). We create the
following linguistic representation to describe the analogical one:

• In(tree, lab)
• In (monkey1, lab)
• In(monkey2, lab)
• Eating(monkey1, banana)
• SittingOn(monkey2, tree)
• Scratching(monkey2, hisHead)

Solution 2.2 (Linguistic and analogical mental representations). The analogical
representation is the same as the previous exercise:

Fig. 4.9 Monkey and banana

35
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Exercises of Chapter 4

Solution ?? (Linguistic and analogical mental representations). We can create
an analogical representation using set theory in this way:

Fig. 4.10 Monkey and banana

Solution ?? (Linguistic and analogical mental representations). This time we
use a labeled set theory diagram:

Fig. 4.11 Monkey and banana
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Solution ?? (Linguistic and analogical mental representations). We can create
an analogical representation using knowledge graphs in this way:

Fig. 4.12 Monkey and banana

Solution ?? (Linguistic and analogical mental representations). This time we
use a labeled knowledge graph:

Fig. 4.13 Monkey and banana



38 Solutions
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